Source code for specparam.objs.utils

"""Utility functions for managing and manipulating model objects."""

import numpy as np

from specparam.sim import gen_freqs
from specparam.data import FitResults
from specparam.objs import SpectralModel, SpectralGroupModel
from specparam.analysis.periodic import get_band_peak_group
from specparam.core.errors import NoModelError, IncompatibleSettingsError

###################################################################################################
###################################################################################################

[docs]def compare_model_objs(model_objs, aspect): """Compare multiple model, checking for consistent attributes. Parameters ---------- model_objs : list of SpectralModel and/or SpectralGroupModel Objects whose attributes are to be compared. aspect : {'settings', 'meta_data'} Which set of attributes to compare the objects across. Returns ------- consistent : bool Whether the settings are consistent across the input list of objects. """ # Check specified aspect of the objects are the same across instances for m_obj_1, m_obj_2 in zip(model_objs[:-1], model_objs[1:]): if getattr(m_obj_1, 'get_' + aspect)() != getattr(m_obj_2, 'get_' + aspect)(): consistent = False break else: consistent = True return consistent
[docs]def average_group(group, bands, avg_method='mean', regenerate=True): """Average across model fits in a group model object. Parameters ---------- group : SpectralGroupModel Object with model fit results to average across. bands : Bands Bands object that defines the frequency bands to collapse peaks across. avg : {'mean', 'median'} Averaging function to use. regenerate : bool, optional, default: True Whether to regenerate the model for the averaged parameters. Returns ------- model : SpectralModel Object containing the average model results. Raises ------ ValueError If the requested averaging method is not understood. NoModelError If there are no model fit results available to average across. """ if not group.has_model: raise NoModelError("No model fit results are available, can not proceed.") avg_funcs = {'mean' : np.nanmean, 'median' : np.nanmedian} if avg_method not in avg_funcs.keys(): raise ValueError("Requested average method not understood.") # Aperiodic parameters: extract & average ap_params = avg_funcs[avg_method](group.get_params('aperiodic_params'), 0) # Periodic parameters: extract & average peak_params = [] gauss_params = [] for band_def in bands.definitions: peaks = get_band_peak_group(group, band_def, attribute='peak_params') gauss = get_band_peak_group(group, band_def, attribute='gaussian_params') # Check if there are any extracted peaks - if not, don't add # Note that we only check peaks, but gauss should be the same if not np.all(np.isnan(peaks)): peak_params.append(avg_funcs[avg_method](peaks, 0)) gauss_params.append(avg_funcs[avg_method](gauss, 0)) peak_params = np.array(peak_params) gauss_params = np.array(gauss_params) # Goodness of fit measures: extract & average r2 = avg_funcs[avg_method](group.get_params('r_squared')) error = avg_funcs[avg_method](group.get_params('error')) # Collect all results together, to be added to the model object results = FitResults(ap_params, peak_params, r2, error, gauss_params) # Create the new model object, with settings, data info & results model = SpectralModel() model.add_settings(group.get_settings()) model.add_meta_data(group.get_meta_data()) model.add_results(results) # Generate the average model from the parameters if regenerate: model._regenerate_model() return model
[docs]def average_reconstructions(group, avg_method='mean'): """Average across model reconstructions for a group of power spectra. Parameters ---------- group : SpectralGroupModel Object with model fit results to average across. avg : {'mean', 'median'} Averaging function to use. Returns ------- freqs : 1d array Frequency values for the average model reconstruction. avg_model : 1d array Power values for the average model reconstruction. Note that power values are in log10 space. """ if not group.has_model: raise NoModelError("No model fit results are available, can not proceed.") avg_funcs = {'mean' : np.nanmean, 'median' : np.nanmedian} if avg_method not in avg_funcs.keys(): raise ValueError("Requested average method not understood.") models = np.zeros(shape=group.power_spectra.shape) for ind in range(len(group)): models[ind, :] = group.get_model(ind, regenerate=True).modeled_spectrum_ avg_model = avg_funcs[avg_method](models, 0) return group.freqs, avg_model
[docs]def combine_model_objs(model_objs): """Combine a group of model objects into a single group model object. Parameters ---------- model_objs : list of SpectralModel or SpectralGroupModel Objects to be concatenated into a group model object. Returns ------- group : SpectralGroupModel Resultant object from combining inputs. Raises ------ IncompatibleSettingsError If the input objects have incompatible settings for combining. Examples -------- Combine model objects together (where `fm1`, `fm2` & `fm3` are assumed to be defined and fit): >>> group = combine_model_objs([fm1, fm2, fm3]) # doctest:+SKIP Combine group model objects together (where `fg1` & `fg2` are assumed to be defined and fit): >>> group = combine_model_objs([fg1, fg2]) # doctest:+SKIP """ # Compare settings if not compare_model_objs(model_objs, 'settings') \ or not compare_model_objs(model_objs, 'meta_data'): raise IncompatibleSettingsError("These objects have incompatible settings " "or meta data, and so cannot be combined.") # Initialize group model object, with settings derived from input objects group = SpectralGroupModel(*model_objs[0].get_settings(), verbose=model_objs[0].verbose) # Use a temporary store to collect spectra, as we'll only add it if it is consistently present # We check how many frequencies by accessing meta data, in case of no frequency vector meta_data = model_objs[0].get_meta_data() n_freqs = len(gen_freqs(meta_data.freq_range, meta_data.freq_res)) temp_power_spectra = np.empty([0, n_freqs]) # Add results from each model object to group for m_obj in model_objs: # Add group object if isinstance(m_obj, SpectralGroupModel): group.group_results.extend(m_obj.group_results) if m_obj.power_spectra is not None: temp_power_spectra = np.vstack([temp_power_spectra, m_obj.power_spectra]) # Add model object else: group.group_results.append(m_obj.get_results()) if m_obj.power_spectrum is not None: temp_power_spectra = np.vstack([temp_power_spectra, m_obj.power_spectrum]) # If the number of collected power spectra is consistent, then add them to object if len(group) == temp_power_spectra.shape[0]: group.power_spectra = temp_power_spectra # Set the check data mode, as True if any of the inputs have it on, False otherwise group.set_check_modes(\ check_freqs=any(getattr(m_obj, '_check_freqs') for m_obj in model_objs), check_data=any(getattr(m_obj, '_check_data') for m_obj in model_objs)) # Add data information information group.add_meta_data(model_objs[0].get_meta_data()) return group
[docs]def fit_models_3d(group, freqs, power_spectra, freq_range=None, n_jobs=1): """Fit power spectrum models across a 3d array of power spectra. Parameters ---------- group : SpectralGroupModel Object to fit with, initialized with desired settings. freqs : 1d array Frequency values for the power spectra, in linear space. power_spectra : 3d array Power values, in linear space, with shape as: [n_conditions, n_power_spectra, n_freqs]. freq_range : list of [float, float], optional Frequency range to fit. If not provided, fits the entire given range. n_jobs : int, optional, default: 1 Number of jobs to run in parallel. 1 is no parallelization. -1 uses all available cores. Returns ------- all_models : list of SpectralGroupModel Collected model results after fitting across power spectra, length of n_conditions. Examples -------- Fit a 3d array of power spectra, assuming `freqs` and `spectra` are already defined: >>> from specparam import SpectralGroupModel >>> group = SpectralGroupModel(peak_width_limits=[1, 6], min_peak_height=0.1) >>> models = fit_models_3d(group, freqs, power_spectra, freq_range=[3, 30]) # doctest:+SKIP """ # Reshape 3d data to 2d and fit, in order to fit with a single group model object shape = np.shape(power_spectra) powers_2d = np.reshape(power_spectra, (shape[0] * shape[1], shape[2])) group.fit(freqs, powers_2d, freq_range, n_jobs) # Reorganize 2d results into a list of model group objects, to reflect original shape all_models = [group.get_group(range(dim_a * shape[1], (dim_a + 1) * shape[1])) \ for dim_a in range(shape[0])] return all_models