[docs]deftrim_spectrum(freqs,power_spectra,f_range):"""Extract a frequency range from power spectra. Parameters ---------- freqs : 1d array Frequency values for the power spectrum. power_spectra : 1d or 2d array Power spectral density values. f_range: list of [float, float] Frequency range to restrict to, as [lowest_freq, highest_freq]. Returns ------- freqs_ext : 1d array Extracted frequency values for the power spectrum. power_spectra_ext : 1d or 2d array Extracted power spectral density values. Notes ----- This function extracts frequency ranges >= f_low and <= f_high. It does not round to below or above f_low and f_high, respectively. Examples -------- Using a simulated spectrum, extract a frequency range: >>> from specparam.sim import sim_power_spectrum >>> freqs, powers = sim_power_spectrum([1, 50], [1, 1], [10, 0.5, 1.0]) >>> freqs, powers = trim_spectrum(freqs, powers, [3, 30]) """# Create mask to index only requested frequenciesf_mask=np.logical_and(freqs>=f_range[0],freqs<=f_range[1])# Restrict freqs & spectra to requested range# The if/else is to cover both 1d or 2d arraysfreqs_ext=freqs[f_mask]power_spectra_ext=power_spectra[f_mask]ifpower_spectra.ndim==1 \
elsepower_spectra[:,f_mask]returnfreqs_ext,power_spectra_ext
[docs]definterpolate_spectrum(freqs,powers,interp_range,buffer=3):"""Interpolate a frequency region in a power spectrum. Parameters ---------- freqs : 1d array Frequency values for the power spectrum. powers : 1d array Power values for the power spectrum. interp_range : list of float or list of list of float Frequency range to interpolate, as [lowest_freq, highest_freq]. If a list of lists, applies each as it's own interpolation range. buffer : int or list of int The number of samples to use on either side of the interpolation range, that are then averaged and used to calculate the interpolation. Returns ------- freqs : 1d array Frequency values for the power spectrum. powers : 1d array Power values, with interpolation, for the power spectrum. Notes ----- This function takes in, and returns, linearly spaced values. This approach interpolates data linearly, in log-log spacing. This assumes a 1/f property of the data, and so should only be applied where this assumption is valid. This approach is intended for interpolating small frequency ranges, such as line noise regions. The interpolation range is taken as the range from >= interp_range_low and <= interp_range_high. It does not round to below or above interp_range_low and interp_range_high, respectively. To be more robust to noise, this approach takes a number of samples on either side of the interpolation range (the number of which is controlled by `buffer`) and averages these points to linearly interpolate between them. Setting `buffer=1` is equivalent to a linear interpolation between the points adjacent to the interpolation range. Examples -------- Using a simulated spectrum, interpolate away a line noise peak: >>> from specparam.sim import sim_power_spectrum >>> freqs, powers = sim_power_spectrum([1, 75], [1, 1], [[10, 0.5, 1.0], [60, 2, 0.1]]) >>> freqs, powers = interpolate_spectrum(freqs, powers, [58, 62]) """# If given a list of interpolation zones, recurse to apply each oneifisinstance(interp_range[0],list):buffer=repeat(buffer)ifisinstance(buffer,int)elsebufferforinterp_zone,cur_bufferinzip(interp_range,buffer):freqs,powers=interpolate_spectrum(freqs,powers,interp_zone,cur_buffer)# Assuming list of two floats, interpolate a single frequency rangeelse:# Take a copy of the array, to not change original arraypowers=np.copy(powers)# Get the set of frequency values that need to be interpolatedinterp_mask=np.logical_and(freqs>=interp_range[0],freqs<=interp_range[1])interp_freqs=freqs[interp_mask]# Get the indices of the interpolation rangeii1,ii2=np.flatnonzero(interp_mask)[[0,-1]]# Extract & log the requested range of data to use around interpolated rangexs1=np.log10(freqs[ii1-buffer:ii1])xs2=np.log10(freqs[ii2:ii2+buffer])ys1=np.log10(powers[ii1-buffer:ii1])ys2=np.log10(powers[ii2:ii2+buffer])# Linearly interpolate, in log-log space, between averages of the extracted pointsvals=np.interp(np.log10(interp_freqs),[np.median(xs1),np.median(xs2)],[np.median(ys1),np.median(ys2)])powers[interp_mask]=np.power(10,vals)returnfreqs,powers
defwrap_interpolate_spectrum(powers,freqs,interp_range,buffer):"""Wraps interpolate function, organizing inputs & outputs to use `partial`."""returninterpolate_spectrum(freqs,powers,interp_range,buffer)[1]
[docs]@replace_docstring_sections(docs_get_section(interpolate_spectrum.__doc__,'Notes',end='Examples'))definterpolate_spectra(freqs,powers,interp_range,buffer=3):"""Interpolate a frequency region across a group of power spectra. Parameters ---------- freqs : 1d array Frequency values for the power spectrum. powers : 2d array Power values for the power spectra. interp_range : list of float or list of list of float Frequency range to interpolate, as [lowest_freq, highest_freq]. If a list of lists, applies each as it's own interpolation range. buffer : int or list of int The number of samples to use on either side of the interpolation range, that are then averaged and used to calculate the interpolation. Returns ------- freqs : 1d array Frequency values for the power spectrum. powers : 2d array Power values, with interpolation, for the power spectra. Notes ----- % copied in from interpolate_spectrum Examples -------- Using simulated spectra, interpolate away line noise peaks: >>> from specparam.sim import sim_group_power_spectra >>> freqs, powers = sim_group_power_spectra(5, [1, 75], [1, 1], [[10, 0.5, 1.0], [60, 2, 0.1]]) >>> freqs, powers = interpolate_spectra(freqs, powers, [58, 62]) """tfunc=partial(wrap_interpolate_spectrum,freqs=freqs,interp_range=interp_range,buffer=buffer)powers=np.apply_along_axis(tfunc,1,powers)returnfreqs,powers
[docs]defsubsample_spectra(spectra,selection,return_inds=False):"""Subsample a group of power spectra. Parameters ---------- spectra : 2d array A group of power spectra to subsample from. selection : int or float The number of spectra to subsample. If int, is the number to select, if float, is a proportion based on input size. return_inds : bool, optional, default: False Whether to return the list of indices that were selected. Returns ------- subsample : 2d array A subsampled selection of power spectra. inds : list of int A list of which indices where subsampled. Only returned if `return_inds` is True. Examples -------- Using a group of simulated spectra, subsample a specific number: >>> from specparam.sim import sim_group_power_spectra >>> freqs, powers = sim_group_power_spectra(10, [1, 50], [1, 1], [10, 0.5, 1.0]) >>> subsample = subsample_spectra(powers, 5) Using a group of simulated spectra, subsample a proportion: >>> from specparam.sim import sim_group_power_spectra >>> freqs, powers = sim_group_power_spectra(10, [1, 50], [1, 1], [10, 0.5, 1.0]) >>> subsample = subsample_spectra(powers, 0.25) """n_spectra=spectra.shape[0]ifisinstance(selection,float):n_sample=int(n_spectra*selection)else:n_sample=selectioninds=np.random.choice(n_spectra,n_sample,replace=False)subsample=spectra[inds,:]ifreturn_inds:returnsubsample,indselse:returnsubsample