specparam.algorithms.algorithm.Algorithm¶
- class specparam.algorithms.algorithm.Algorithm(name, description, public_settings, private_settings=None, data_format='spectrum', modes=None, data=None, results=None, debug=False)[source]¶
Template object for defining a fit algorithm.
- Parameters:
- namestr
Name of the fitting algorithm.
- descriptionstr
Description of the fitting algorithm.
- public_settingsSettingsDefinition or dict
Name and description of public settings for the fitting algorithm.
- private_settingsSettingsDefinition or dict, optional
Name and description of private settings for the fitting algorithm.
- data_format{‘spectrum’, ‘spectra’, ‘spectrogram’, ‘spectrograms’}
Set base data format the model can be applied to.
- modesModes
Modes object with fit mode definitions.
- dataData
Data object with spectral data and metadata.
- resultsResults
Results object with model fit results and metrics.
- debugbool
Whether to run in debug state, raising an error if encountered during fitting.
- __init__(name, description, public_settings, private_settings=None, data_format='spectrum', modes=None, data=None, results=None, debug=False)[source]¶
Initialize Algorithm object.
Methods
__init__(name, description, public_settings)Initialize Algorithm object.
add_settings(settings)Add settings into object from a ModelSettings object.
Return object debug status.
Return user defined settings of the current object.
print([description, concise])Print out the algorithm name and fit settings.
set_debug(debug)Set debug state, which controls if an error is raised if model fitting is unsuccessful.
- add_settings(settings)[source]¶
Add settings into object from a ModelSettings object.
- Parameters:
- settingsModelSettings
A data object containing model settings.
- get_settings()[source]¶
Return user defined settings of the current object.
- Returns:
- ModelSettings
Object containing the settings from the current object.